
Seminario LoRel

Semántica operacional y su aplicación para el estudio de recolección de
basura, en Lua 5.2

Mallku Ernesto Soldevila Raffa

Director: Dr. Daniel Fridlender
Co-director: Dr. Beta Ziliani

FAMAF - Universidad Nacional de Córdoba

Summary

About Lua

Why do we need a formal semantics for Lua?

Formal Semantics

Mechanization

Practical application

Future work

2 / 40

About Lua

3 / 40

About Lua

Extension and data-entry language:
- Small language, small implementation.
- Should be extensible.
- No need for mechanisms for programming-in-the-large.
- Good data-description facilities.
- Clear and simple syntax.

Features:
- Procedural programming with data-description facilities (only one structured

data-type: tables)

- Features for fast development: dynamic typing, automatic memory management.

- Metaprogramming mechanisms: extension of the semantics of programming
constructions.

4 / 40

About Lua

Projects using Lua:
- Heavily used in the video game industry: mobile games, “AAA” games and game

engines.

- Other scriptable software: Adobe Photoshop Lightroom, LuaTex, VLC media player,
Wireshark,...

- www.lua.org/uses.html.

5 / 40

www.lua.org/uses.html

Who could benefit from a formal semantics for Lua?

- Developers of tools for code analysis and language
extensions.

- Lua programmers.

6 / 40

Why do we need a formalized semantics of Lua?

Developers of tools for code analysis and language extensions

Formal proofs of soundness, strengthen the possibilities of static analysis.

Tools for code analysis:
- Luacheck1

- Lua Inspect2

- LuaSafe3

- More on lua-users.org/wiki/ProgramAnalysis.

Language extensions
- Ravi4

- Typed Lua5

1https://github.com/mpeterv/luacheck
2http://lua-users.org/wiki/LuaInspect
3https://github.com/Mallku2/luasafe-redex
4http://ravilang.github.io/
5A. M. Maidl, F. Mascarenhas, and R. Ierusalimschy. A formalization of Typed Lua. In DLS

’15, 2015
7 / 40

lua-users.org/wiki/ProgramAnalysis
https://github.com/mpeterv/luacheck
http://lua-users.org/wiki/LuaInspect
https://github.com/Mallku2/luasafe-redex

Why do we need a formalized semantics of Lua?

Lua programmers

Developers could benefit from it: concise formal description of the semantics of the
whole language (no core language approach required for Lua).

The project can benefit from having people of differente areas testing it.

8 / 40

Formal semantics

9 / 40

Formal semantics

- Design criteria

- Semantics of stateless constructions

- Semantics of state

- Semantics of programs

- Library services

- Metatables

- Garbage collection

10 / 40

Formal semantics

Design criteria

We are tackling the semantics of a real programming language, defined by its
interpreters and reference manual (both unsuitable for formal reasoning).

We would like for our semantics to serve as a link between the informal
understanding of Lua and its study through formal models.

11 / 40

Formal semantics

Design criteria

We are tackling the semantics of a real programming language, defined by its
interpreters and reference manual (both unsuitable for formal reasoning).

We would like for our semantics to serve as a link between the informal
understanding of Lua and its study through formal models.

11 / 40

Formal semantics

These lead us to wish for...

Evidence of the correspondence between formal and informal Lua: testing, evident
correspondence with the reference manual.

Semantics should make use of concepts already present in the mind of the developer.

12 / 40

Formal semantics

These lead us to wish for...

Evidence of the correspondence between formal and informal Lua: testing, evident
correspondence with the reference manual.

Semantics should make use of concepts already present in the mind of the developer.

12 / 40

Formal semantics

The model

Concepts from small-steps operational semantics and reduction semantics with
evaluation contexts.

- Small-step operational semantics: the execution model of state change (to capture
the intuition of the developer).

- Reduction semantics with evaluation contexts: evaluation contexts and their several
applications (easiness of description of context-sensitive semantics, modularity),
environment using substitution function.

13 / 40

Formal semantics

Semantics of stateless constructions

syntax

s ::= if e then s else s | ...

v ::= nil | false | ...

e ::= v | e op e | ...

op ::= + | - | * | / | ˆ | % | ...

relations between terms (computations)

v /∈ {nil, false}
if v then s1 else s2 → s1

v ∈ {nil, false}
if v then s1 else s2 → s2

op ∈ {+, -, *, /, ˆ, %}
v op e → δ(op, v , e)

interpretation function

δ(op, n1, n2) = n̂1 op n̂2, op ∈ {+, -, *, /, ˆ, %}

14 / 40

Formal semantics

Semantics of state

syntax

s ::= ... | local x = e in s | x = e

computations

σ’ = (r , v), σ

σ : local x = v in s →σ σ’ : s[x\r]

σ’ = σ[r := v]

σ : r = v →σ σ’ : ;

15 / 40

Formal semantics

Semantics of programs

evaluation contexts

E ::= [] | if E then s else s
| local x = E in s |
| x = E | E binop e | v binop E

embedding relations using evaluation contexts

t → t′

σ : E [[t]] 7→ σ : E [[t′]]

σ : t →σ σ′ : t′

σ : E [[t]] 7→ σ′ : E [[t′]]

16 / 40

Formal semantics

Library services

Specification of library services captured with the interpretation function (δ):

l ∈ {assert, error, pcall, select, ...}
$builtIn l (v 1, ..., v n)→ δ(l, v 1, ..., v n)

δ(select, v 1, v 2, ..., v n) =



〈v v̂1+1, ..., v n〉 if 1 ≤ v̂ 1 ≤ n − 1

〈 〉 if n ≤ v̂ 1

〈v n−1+|v̂1|, ..., v n〉 if −(n − 1) ≤ v̂ 1 ≤ −1

〈n − 1〉 if v 1 = ”#”

17 / 40

Formal semantics

Metatables

An ordinary Lua table that defines the behaviour of a given value under certain
special operations:

1 local t = {}
2 t() >> attempt to call local ’ t ’ (a table value)
3 setmetatable(t , { call = function () print (” Callable !”) end})
4 t() >> Callable!

Useful to develop DSLs.

18 / 40

Formal semantics

Metatables: formalization

Being Lua an extensible language, it’s not a surprise that it has being growing on
metamethods: the semantics should be versatile in that aspect.

The special operation is tagged:

δ(type, v 1) 6= “function”

σ : v 1 (v 2, ...) →σ σ : L v 1 (v 2, ...) MWrongFunCall

The metatable mechanism solves the situation:

v 3 = indexmetatable(v 1, “ call”, σ)
v 3 /∈ {nil, false}

σ : L v 1 (v 2, ...) MWrongFunCall →meta σ : v 3(v 1, v 2, ...)

19 / 40

Formal semantics

Properties of 7→

Formalization (on paper): 11 pages long, without garbage collection (not suitable for
proofs on paper).

No features to export to proof assistants: opportunity to work on Redex → Coq.

20 / 40

Formal semantics

Properties of 7→ - Redex lightweight approach: random-testing with redex-check

Evidence for progress of 7→: for a ` that should capture well-formedness of
configurations, test its soundness property:

- For a given configuration σ : s, if ` σ : s, then it is a final configuration or it is an
intermediate computation state.

- 5 ∗ 106 terms generated by redex-check.

21 / 40

Formal semantics

Properties of 7→ - Redex lightweight approach: random-testing with redex-check

Even though the mechanization successfully passed the tests taken from Lua’s test suite,
redex-check showed that the mechanization still had flaws:

- Mostly, grammar ambiguities.

- Really useful to polish definition of well-formedness of configurations, for the
semantics of a real programming language (tricky!).

22 / 40

Garbage collection

23 / 40

Formal semantics

Garbage collection (GC)

Lua 5.2 implements 2 garbage collectors based on reachability:

- mark-and-sweep

- generational

24 / 40

Formal semantics

Garbage collection (GC)

Includes 2 interfaces with the garbage collector:

- finalizers:
I Useful for helping in the proper disposal of external resources used by the program.
I Chronological order of finalization, avoids indestructible objects.

- weak tables:
I A table whose keys and/or values are referred by weak references.
I Mitigate common GC problems (ephemerons), provide support for common

data-structures implemented with weak tables (property tables).

25 / 40

Formal semantics

Garbage collection (GC)

Includes 2 interfaces with the garbage collector:

- finalizers:
I Useful for helping in the proper disposal of external resources used by the program.
I Chronological order of finalization, avoids indestructible objects.

- weak tables:
I A table whose keys and/or values are referred by weak references.
I Mitigate common GC problems (ephemerons), provide support for common

data-structures implemented with weak tables (property tables).

25 / 40

Formal semantics

Garbage collection (GC)

Interaction between interfaces:

- Finalization checks for reachability taking into account weak tables semantics.

- Weak tables are cleaned taking into account finalization order.

26 / 40

Formal semantics

GC: formalization

Non-deterministic execution steps:

(σ′, f , t) = gcfin weak(σ,E[[s]])

σ : E[[s]] 7→gcfin weak σ′ : E[[f (t); s]]

gcfin weak specifies the behavior of a correct garbage collector for Lua:
- Suitable notion of reachability for Lua.
- Specifies the portion of the store that can be reclaimed.
- Specifies fields of weak tables than can be removed.
- Identifies the next table to be finalized.
- Specifies interaction between both interfaces.

27 / 40

Formal semantics

GC: formalization

Non-deterministic execution steps:

(σ′, f , t) = gcfin weak(σ,E[[s]])

σ : E[[s]] 7→gcfin weak σ′ : E[[f (t); s]]

gcfin weak specifies the behavior of a correct garbage collector for Lua:
- Suitable notion of reachability for Lua.
- Specifies the portion of the store that can be reclaimed.
- Specifies fields of weak tables than can be removed.
- Identifies the next table to be finalized.
- Specifies interaction between both interfaces.

27 / 40

Formal semantics

GC: properties

Framework for GC and sanity-check:
- Define appropriate notions of result of programs, observations over programs

(non-termination or returned values), garbage.

- Sanity check: 7→gc (GC-steps without interfaces to the garbage collector) preserves
reachability, result depends on reachability, postponement lemma.

- GC-correctness: for a given program P, the observations are preserved by GC-steps
without interfaces to the garbage collector (i.e., GC-steps only remove garbage):

obs(P, 7→) = obs(P, 7→ ∪ 7→gc)

28 / 40

Formal semantics

GC: properties

Framework for GC and sanity-check:
- Define appropriate notions of result of programs, observations over programs

(non-termination or returned values), garbage.

- Sanity check: 7→gc (GC-steps without interfaces to the garbage collector) preserves
reachability, result depends on reachability, postponement lemma.

- GC-correctness: for a given program P, the observations are preserved by GC-steps
without interfaces to the garbage collector (i.e., GC-steps only remove garbage):

obs(P, 7→) = obs(P, 7→ ∪ 7→gc)

28 / 40

Formal semantics

GC: properties

Framework for GC and sanity-check:
- Define appropriate notions of result of programs, observations over programs

(non-termination or returned values), garbage.

- Sanity check: 7→gc (GC-steps without interfaces to the garbage collector) preserves
reachability, result depends on reachability, postponement lemma.

- GC-correctness: for a given program P, the observations are preserved by GC-steps
without interfaces to the garbage collector (i.e., GC-steps only remove garbage):

obs(P, 7→) = obs(P, 7→ ∪ 7→gc)

28 / 40

Features left

29 / 40

Formal semantics

Features left:
- Types: coroutines (an independent thread of execution; only suspends its execution by

explicitly calling a yield function) and userdata (to allow arbitrary C data to be stored
in Lua variables).

- goto.
- Remaining standard library’s services: coroutine, string, table.

30 / 40

Mechanization

31 / 40

The mechanization.

Implemented using Redex.

Tested against Lua 5.2’s test suite: 1382 LOCS (from 6902 LOCS).

Why?
- Language features not covered by our formalization (mostly, library services).
- Tests of implementation details of the interpreter and not the language’s semantics:

generation of bytecode, performance, etc.

Every line of code of the test suite that falls within the scope of this work (except
for GC: poor performance) successfully passes the tests.

Mechanization available at github.com/Mallku2/lua-gc-redex-model.

32 / 40

github.com/Mallku2/lua-gc-redex-model

Practical application

33 / 40

Practical application

Problem: ∃p, obs(p, 7→) 6= obs(p, 7→ ∪ 7→gc fin weak)

New possibilities for static analysis over Lua programs: LuaSafe

Let Psafe = {p | obs(p, 7→) = obs(p, 7→ ∪ 7→gc fin weak)}

For a given program p that uses weak tables, recognizing p ∈ Psafe requires:
I Type information.
I weakness of each table.
I A syntactic approximation of the reachability tree.

34 / 40

Practical application

p type inf. ptyped rch. def cfg rch def type check. p ∈ Psafe?

35 / 40

Practical application

1 local cache1 = {[1] = function() return 1 end,
2 [2] = function() return 2 end,
3 [3] = function() return 3 end}
4 local obj = {method = cache1[1], attr = {}}
5 local cache2 = {[1] = cache1[2]}
6 setmetatable(cache1, { mode = ”v”})
7 setmetatable(cache2, { mode = ”v”})
8 cache1 [1]()
9 cache1 [2]()

10 cache1 [3]()

”Access to: ”
’cache1 [2]
”may exhibit nondeterministic behavior”
”Access to: ”
’cache1 [3]
”may exhibit nondeterministic behavior”

36 / 40

Future work

37 / 40

Future work

Include missing Lua features.

Redex → Coq:
- Machine-checked proofs.
- Extraction of a verified interpreter.

Improve LuaSafe:
- Soundness of static analysis.
- Improve type inference.
- Better syntactic approx. of reach. tree.
- Improve performance.

Recognition of semantic garbage based on type checking.

38 / 40

Publications

Decoding Lua: Formal semantics for the developer and the semanticist.
M. Soldevila, B. Ziliani, B. Silvestre, D. Fridlender, and F. Mascarenhas. In Proceedings of

the 13th ACM SIGPLAN Dynamic Languages Symposium, DLS 2017, 2017.

Understanding Lua’s Garbage Collection - Towards a Formalized Static Analyzer.
M. Soldevila, B. Ziliani, and D. Fridlender. In Proceedings of the 22nd Symposium on

Principles and Practice of Declarative Programming, PPDP 2020, Bologna, Italy, September

8–10, 2020.

39 / 40

¡GRACIAS!

40 / 40

